Momentos económicos… e não só

About economics in general, health economics most of the time

Curvas e contracurvas -vida com o coronavirus (6)

3 comentários

(aviso: este post é longo, e tem uma componente técnica de suporte apresentada no final)

A última semana foi feita às curvas e contracurvas, com diversas medidas destinadas a conter a difusão da Covid-19 a serem tomadas, culminando com a declaração do estado de emergência.

No meio desta turbulência, uma discussão que normalmente seria obscura e apenas para alguns com uma costela mais nerd acabou por despertar forte atenção pública (e até paixões e ódios): saber se o crescimento da epidemia pode ser previsto com a denominada curva exponencial. Jorge Buescu, num conjunto de artigos no Observador (aqui e aqui) e num grupo de discussão no facebook, teve o mérito de lançar a discussão e chamar a atenção com as previsões de doentes que a aplicação dessa metodologia gerou (análise de regressão com utilização de curva exponencial).

Porque há formas diferentes de obter previsões e porque é conhecido que se numa fase inicial de uma epidemia esta se comporta com um padrão de crescimento exponencial, é igualmente sabido que em algum momento esse crescimento exponencial dará lugar a uma inversão, com abrandamento do crescimento (o chamado ponto de inflexão, em que a taxa de crescimento  de novos doentes passa a ser menor do que no dia anterior).

Daqui resulta que se a intenção for prever o número de doentes com covid-19 identificados pelo sistema de saúde num futuro próximo (medido em poucos dias) numa fase inicial do processo (como aquele em que nos encontramos), então a curva exponencial é uma forma simples e relativamente expedita de fazer essa previsão. E muitos têm sido os que a utilizam (aliás, se me pedirem a melhor previsão para amanhã, com base nos dados mais recentes, então essa também será a minha melhor previsão). A este respeito, deixo também aqui a ligação para o site da Associação Nacional de Médicos de Saúde Pública (ANMSP), que estabeleceu um acompanhamento da situação, com uma previsão, com a disponibilização da descrição da metodologia usada (tab “métodos” na página da ANMSP).

Diferente é se quiser prever para daqui a uma semana ou daqui a 15 dias, por exemplo. Para um horizonte mais longo, é inevitável que o processo de crescimento deixe de ser exponencial (basta pensar que no prazo de um mês não é possível ter 12 milhões de doentes de covid-19 num país com pouco mais de 10 milhões de habitantes). Este elemento é conhecido dos que estão a estimar modelos de curva exponencial para esta fase (mas com base em comentários de outras pessoas, há ainda alguma confusão sobre esse aspecto).

Daí que a previsão além dos próximos dias exija outras abordagens e esteja sujeita a mais incerteza. A utilização da curva logística como instrumento permite acomodar a redução da taxa de crescimento ao fim de algum tempo que irá necessariamente ocorrer.   A questão que se coloca em termos técnicos é qual a melhor forma de estabelecer essa curva logística – o que iremos observar será influenciado pela dinâmica natural do processo de contágio da doença e pelas políticas adoptadas com a intenção de o influenciar. A este respeito, deixo esta ilustração muito bem conseguida no Washington Post.

Claro que há alternativas à utilização da curva logística, construindo modelos mais detalhados, em que a dinâmica de contágio de pessoas saudáveis depende explicitamente de quantos indivíduos infectados circulam na população e quantos contactos realizam antes de deixar essa situação. Estas dinâmicas complicam-se quando são influenciadas por medidas adoptadas (se ainda não viu a ilustração do Washington Post, vá ao link no final do parágrafo acima). A complexidade é maior se se vier a dar o caso de que ter a covid-19 não gera imunidade futura, podendo voltar a ser contraída. A construção desse tipo de modelos demora mais tempo e exige mais informação, bem como o conhecimento técnico adequado.

A curva logística surge aqui como uma forma resumida de apanhar esses vários efeitos, e sendo a mais rápida construção uma vantagem, perde na capacidade de avaliar explicitamente efeitos das medidas distanciamento social e de contenção. Permite porém de uma forma mais rápida ter uma ideia do impacto global da infecção, em número de pessoas que previsivelmente terão covid-19.

No atual momento, dois aspectos são claros nas tentativas de construir uma curva logística: a) a sua parte inicial, tendo também um comportamento perto da curva exponencial, permite igualmente uma boa previsão a curto prazo; b) dependendo de parâmetros de caracterização, a forma de cálculo destes influencia o resultado final, podemos assim obter resultados diversos para a estimativa final do número de pessoas que contrairá a covid-19.

O meu post anterior ilustrou o primeiro ponto acima, em que para uma descrição quase idêntica da evolução inicial, a curva logística vai apresentar valores a médio prazo muito mais baixos que a curva exponencial, pela natureza explosiva desta última.

As figuras seguintes ilustram o segundo ponto: com formas diferentes de dar valores à curva logística chegamos a estimativas de pessoas com covid-19 diferentes – a figura abaixo apresenta duas dessas possibilidades (“curva logística” e “curva logística suave”, na Figura 1). Claro que conforme formos avançando no processo, a informação do que for sucedendo irá levar a uma revisão das estimativas e a uma convergência de valores. Mas esse efeito é de pouca utilidade quando se quer ter hoje uma ideia de quantas pessoas terão a covid-19, para ajudar na definição dos recursos necessários.

Figura 1: curvas logísticas e exponencial calculadas com os valores diários de doentes (DGS) (versões mais suaves, provavelmente demasiado optimistas) (atualizada a 19/03/2020)

graf-exponencial-logistica

Luis Sá (Univ Minho) fez contas similares, e com uma parametrização ligeiramente diferente obteve resultados diferentes, que mudaram muito de ontem para hoje, dado o valor favorável publicado hoje (19 de março de 2020, referente a 18 de março de 2020), mostrando a sensibilidade da estimação a médio e longo prazo à informação disponível.

Figura 2: curva logistica (calculada por Luis Sá, U Minho, atualizada a 19/03/2020)

logisticaontem

Figura 3: curva logística (calculada por Luis Sá, U Minho, atualizada a 18/03/2020)

logisticaontem

Para Itália, Gonçalo Correia Lopes (U Aveiro) tem uma comparação similar entre as duas curvas, exponencial e logística.

Figura 4: evolução em Itália (cálculos de Gonçalo Correia Lopes)

89983035_3108826789128330_5307911865060294656_n

O debate que tem havido, por vezes com posições desnecessariamente extremadas, acaba por ser útil por trazer ideias, explicações, informação que é importante para estabelecer a melhor forma de prever as situações futuras. A este respeito, deixo como sugestão de leitura o texto de Alexandre Abreu no Expresso. Por exemplo, ao se elaborar um modelo matemático para descrição dos dados que é muito elegante mas impossível nos mecanismos biológicos da doença, ter um biólogo a apontar esse aspecto é relevante para rever o modelo de previsão.

Por isso, manter uma abertura intelectual e uma capacidade de escuta das visões dos outros, com sentido crítico mútuo, sem ser adversarial, ter disponibilidade de dados e fazer uma sua utilização adequada, será a  melhor forma de avançar no objectivo de uma boa previsão.

As consequências de cada um se isolar no seu mundo são ilustradas por um dos melhores gráficos que surgiu nos últimos dias, disponibilizado por Pedro Magalhães no facebook, que trazendo algum humor nos questiona sobre as oportunidades que devemos não perder para fazermos melhor estas previsões. Para que possam ser úteis a quem as quiser usar.

graf pedro magalhaes

(nota: a escala dos casos é logaritmica)

A propósito desta discussão recebi muitos comentários que me fizeram pensar em argumentos e ângulos novos, e perceber limitações e possíveis extensões deste tipo de análises, bem como sugestões de leituras / videos. Deixo aqui alguns, por mero gosto pessoal (são anónimos porque me foram enviados privadamente, e pedi autorização aos autores para os divulgar, editados por mim), e sem qualquer ordem especial:

a) Creio que a tua explicação só peca por mecânica: teria sido interessante explicar porque é logística a curva. (…)
A curva começa a crescer menos e a estacionar na parte superior devido à tal “herd immunity”, ou imunidade de grupo ou de “horda”. Tal acontece quando vai diminuindo o número dos “suscetíveis”, por dentro do grupo estarem a ser muitos mais os infetados, com ou sem sintomas clínicos. É por isso que é tão importante o confinamento dos grupos, para que não haja contactos, muito menos esporádicos, de uns com os outros. A decisão do encerramento foi desastrosa em Itália por ter levado os estudantes para as residências secundárias de pais e avós, situadas a centro e sul do foco inicial. A nossa decisão, embora para mim devesse ter esperado cinco dias, foi tomada por óbvia pressão social e [levou a] encerramentos não supervisionados. estes só não foram desastrosos como em Itália por o Governo ter ordenado o confinamento quase imediato. E mesmo assim ainda iremos amargar as 36 horas entre a aplicação prática de ambas as decisões.
Informação sobre a Herd immunity pode ser obtida em Lilianfeld, Abraham, Principles of Epidemiology (…);

b) Tudo se torna mais difícil de calcular quando aquilo que se conhece são só os casos graves, havendo, pelo que se conhece da informação transmitida, muitos casos ligeiros não diagnosticados. Por cá ainda só existe indicação para testar os casos de doença respiratória grave. Países como a Alemanha e Coreia que foram mais além no testar têm uma taxa de mortalidade mais baixa.
A Itália terá uma taxa mais alta de mortalidade porque, tal a como na China, quando deu por isso já a doença estava disseminada na comunidade, havendo muito subdiagnóstico. Aliás só assim se explica como tantos estrangeiros se “infectaram” em Itália e “exportaram” a doença para os seus países, quando ainda havia relativamente poucos casos conhecidos.
Não sei se a curva de “doentes” será a mesma da dos “infectados” (formas minor+formas graves).

c) plano das autoridades italianas, aqui, com a descrição das medidas adoptadas e do seu timing.

d) Ted Talk de Bill Gates, 2015, The next outbreak? we’ re not ready – nem naquela altura, bem agora.

e) o texto de André Peralta-Santos no Público, Pandemias, instituições e open source.

f)  Sobre o meu artigo no observador (resultante do meu post anterior):  “(…) não se trata de uma questão de crença. É antes uma questão do domínio da biologia em conjunto com a matemática. Na verdade, este tipo de discussões demostra a importância de abordagens multidisciplinares. Enquanto biólogo, penso que a questão passa por analisar taxas de crescimento e ter a noção de que são os recursos do sistema que limitam o crescimento. Neste caso específico, é a “disponibilidade de humanos” que faz o factor exponencial ser maior ou menor. Assim, os modelos têm de ser ajustados no dia a dia e para isso é importante ter bons números, para ajustar as previsões e poder ter dados mais fiáveis. Certo que os modelos são dependentes da quantidade dos dados existentes, por isso a importância de integrar conhecimento de diferentes disciplinas à priori, para evitar más previsões a longo prazo.”

g) duas sugestões de leitura no facebook: Luis Vicente (aqui) e Filipa Vala (via Guadalupe Simões) (aqui), além do grupo criado pelo Jorge Buescu (aqui) (acesso por autorização), onde se encontram muitos comentários interessantes.

Em resumo, a) muitas das diferenças que surgem na discussão resultam de perspectivas distintas- prever os próximos dois ou três dias, versus perceber o que será a dimensão total; b) a incerteza a prever a mais de dois ou três dias é ainda bastante grande; c) a discussão tem tido uma considerável participação cívica.

Para os próximos dias, parece-me importante continuar o caminho de redução iniciado de contenção e evitar a ansiedade criada por estar sempre a vigiar a revelação de novos números (uma vez que uns dias serão mais positivos e outros mais negativos).

 


Anexo Técnico:

A evolução da curva exponencial: tem-se falado da curva exponencial como sendo uma única curva. Na verdade, cada vez que sai um novo valor, cada dia, para o número de doentes em Portugal, é, ou deve ser, atualizada a curva. Curiosamente, tem havido uma evolução sucessiva da curva exponencial, tornando-se menos exponencial ao longo dos dias. Significa que há uma semana atrás a previsão do valor de doentes para o dia de hoje é muito maior do que o valor realmente observado, e maior do que o valor previsto com base em toda a informação até ontem. Este sucessivo abaixamento da curva exponencial é ele próprio um sinal favorável, ainda que bastante ténue ainda.

A figura seguinte ilustra essa evolução, enquanto o quadro apresenta a diferença crescente entre a projecção da curva exponencial que era possível estimar há uma semana, e o que é a realidade de hoje.

Figura 4: a evolução ao longo dos dias da curva exponencial

graficos-curva exponencial

Previsão segundo a curva exponencial na data :
Casos Reais 10 Março 2020 13 Março 2020 16 Março 2020 18 Março 2020
11/03/2020 59 73
12/03/2020 78 106
13/03/2020 112 152 126
14/03/2020 169 219 178
15/03/2020 245 316 250
16/03/2020 331 455 352
17/03/2020 448 655 495 476
18/03/2020 642 943 696 667
19/03/2020 785 1358 979 935 896

É interessante ver qual o erro de previsão para os dois últimos dias conhecidos (18 e 19 de Março 2020), em que o erro de previsão aumenta consideravelmente quando se usa estimativas da curva exponencial da semana passada – utilizando a informação até 11 de março de 2020 para estimar uma curva exponencial, e prevendo para uma semana depois, o valor estimado de casos é de 1358, o valor real foi 785, que é cerca de 58% do valor previsto. Há por isso um desvio importante na previsão.

19/03/2020 10 Março 2020 13 Março 2020 16 Março 2020 18 Março 2020
erro de previsão 573 194 150 111
erro (%) 57,79% 80,15% 83,97% 87,66%
18/03/2020 10 Março 2020 13 Março 2020 16 Março 2020
erro de previsão 301 54 25
erro (%) 68,07% 92,20% 96,24%

Métodos: curva logistica

A equação estimada da curva logística tem a seguinte forma y = b1 * (1+exp(-b2*(x – b3))^(-1).

Foram usados dois métodos de estimação, que produzem resultados não muito diferentes. O primeiro envolveu optimização não-linear para obter os melhores valores possíveis dos parâmetros da curva, de forma a reproduzir as observações que já existem. O segundo método consistiu em primeiro estimar dois parâmetros (b2 e b3) de forma a reproduzirem da melhor forma possível a taxa de crescimento observada em Portugal. Tendo estas estimativas, recuperou-se, utilizando o valor absoluto de doentes em Portugal por dia, o parâmetro de escala final, que é essencialmente similar. A tabela seguinte reproduz os valores obtidos para a estimativa pontual.

Versão 1 Versão 2
b1 2100 2008
b2 0,385 0,469
b3 19,283 18,708

 

Autor: Pedro Pita Barros, professor na Nova SBE

Professor de Economia da Universidade Nova de Lisboa

3 thoughts on “Curvas e contracurvas -vida com o coronavirus (6)

  1. Caro Prof. Pedro Barros. O modelo que o Prof. Buescu está a usar é o SIR que é o modelo mais básico dos modelos determinísticos estudados em Biomatemática. A sua interpretação das palavras “exponencial” e “logística” em sentido estrito como se pode apreciar no seu post está desadequada pois apenas se referem à forma da curva ao longo do tempo e ao seu comportamento aproximado.
    Há uma grande desorganização a nível científico nesta área de investigação no nosso país o que leva a algumas intervenções precipitadas e que mostra que deveria haver um grupo de investigação permanente afeto à DGS que fizesse um trabalho mais rigoroso de previsão.
    Quanto a este vírus, sendo novo, e tendo uma dinâmica de contágio tão desconhecida qualquer modelo e trabalho de previsão vale o que vale. O mais importante seria, na minha opnião, as pessoas perceberem que há um processo multiplicativo subjacente ao fenómeno e tendo em conta a sobrecarga nos sistemas nacionais de saúde que esta pandemia está a requerer, evitar a propagação e o contágio é a melhor estratégia.
    A Economia tem agora um papel mais fundamental do que nunca para garantir que a estratégia não provoca uma hecatombe.
    Cumprimentos, miguel mendes

    Gostar

    • Caro Miguel Mendes, obrigado pelo seu comentário. Eu creio que o Jorge Buescu está a usar mesmo só a curva exponencial, sem ser o modelo SIR – é uma forma “quick and dirty” de projetar os valores mais próximos, e embora ele conheça bem os modelos SIR não é o que está a usar agora. E a logística é apenas outra “quick and dirty” alternativa. É apenas nesse sentido que os termos são usados, referem-se apenas e unicamente às curvas de caracterização estatística na análise de regressão.
      Estou completamente de acordo que devem ser usados modelos mais completos, com mais informação e capacidade dinâmica mais rica (o que chamei modelos estruturais), e que espero seja o que está na base do trabalho da DGS (mesmo que esse modelo não seja neste momento conhecido publicamente) e das medidas adoptadas.

      Gostar

      • Caro Prof. Pedro Barros. Obrigado pela resposta. Ele respondeu-me diretamente num comentário do grupo à pergunta sobre que modelo estaria a usar, e garantiu ser o SIR… De qualquer das formas estamos de acordo.
        Quanto à DGS já tentei saber quem faz as contas. Desconfio que sejam os docentes da Escola Nacional de Saúde Pública, entre eles, a professora Carla Nunes. Já a contactei mas sem resposta.
        Entretanto, a FCT lançou um repto a colaborações entre investigadores na área. Já veio tarde para este surto. Espero que venha a tempo do próximo (já no próximo inverno?…quem sabe)

        Gostar

Deixe um momento económico para discussão...

Preencha os seus detalhes abaixo ou clique num ícone para iniciar sessão:

Logótipo da WordPress.com

Está a comentar usando a sua conta WordPress.com Terminar Sessão /  Alterar )

Google photo

Está a comentar usando a sua conta Google Terminar Sessão /  Alterar )

Imagem do Twitter

Está a comentar usando a sua conta Twitter Terminar Sessão /  Alterar )

Facebook photo

Está a comentar usando a sua conta Facebook Terminar Sessão /  Alterar )

Connecting to %s